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Convergent sea-ice flow

Mark Tschudi
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Pressure ridging in sea ice
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Objectives

• Particle-based methods for sea ice may be
advantageous in high-resolution climate models.

• In established models, ice strength increases
with ice thickness.

• Analyze mechanical interaction of two simulated
ice floes during compression.

• Generalize observed compressive rheology and
apply to larger scale particle-based model.

• Explore effects of ridging on large-scale rheology
and strain distribution.
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Discrete element method
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Granular contact search

a) All-to-all b) Radial cut-off distance c) Coarse orthogonal grid

Damsgaard 2015 Ph.D. thesis
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Ice-ocean-atmosphere interpolation
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Discrete element modeling: Unbonded mechanics
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Discrete element modeling: Unbonded mechanics
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Cohesionless discrete element modeling: Contact rheology

Damsgaard et al. 2013 J. Geophys. Res.
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Cohesive discrete element modeling: 2D bond mechanics
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Cohesive discrete element modeling: 3D bond mechanics

Herman 2016 Geosci. Model Dev.
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Granular dynamics code

• Purpose-written discrete element method code
• “Sandbox” for granular simulation (flexibility over performance)
• Free & open source: https://src.adamsgaard.dk/Granular.jl
• Currently being rewritten in C (https://src.adamsgaard.dk/granular)

https://src.adamsgaard.dk/Granular.jl
https://src.adamsgaard.dk/granular
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Two colliding ice floes: Simulation setup
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Compressive experiments with varying thicknesses
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Compressive experiments with varying thicknesses
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Failure stages during compression
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Failure stages during compression
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Small-scale experiment and parameterization
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Ice thickness and modeled compressive strength
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Idealized ice-floe contact modes
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Idealized ice-floe contact modes
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Ridging parameterization on a larger scale
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Ridging parameterization on a larger scale
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Conclusions

• Ice-floe mechanics are simulated using particles connected with breakable bonds

• Elasticity provides large resistance during compression of thick ice floes

• Weakening after compressive failure causes ridging to be spatially localized

• Refreezing is expected to heal the yield strength by adding cohesion between
ice-floe pieces
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Appendix
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Sea-ice thermodynamics: Three-layer model
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Winton 2000 J. Atm. Ocean. Tech.
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